Execute one-sample permutation test on two numeric vector. Its keep one vector constant and ‘shuffle’ the other by resampling. This approximates the null hypothesis — that there is no dependency/difference between the variables.
Usage
ptest(
x,
y,
FUN,
rk = FALSE,
alternative = c("two.sided", "less", "greater"),
num.s = 1000,
...
)
Arguments
- x
\[
numeric(1)
]
a numeric vector.- y
\[
numeric(1)
]
a numeric vector.- FUN
\[
function(1)
]
the function to be applied- rk
\[
logical(1)
]
if its TRUE transform x, y numeric vectors with samples ranks.- alternative
\[
character(1)
]
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.- num.s
\[
numeric(1)
]
number of samples with replacement created with y numeric vector.- ...
Additional arguments (TODO).