Remove highly correlated variables from a data.frame using the
corrp functions outputs and the caret package function findCorrelation
.
Usage
corr_rm(df, c, ...)
# S3 method for clist
corr_rm(
df,
c,
col = c("infer.value", "stat.value"),
isig = TRUE,
cutoff = 0.75,
...
)
# S3 method for list
corr_rm(
df,
c,
col = c("infer.value", "stat.value"),
isig = TRUE,
cutoff = 0.75,
...
)
# S3 method for cmatrix
corr_rm(df, c, cutoff = 0.75, ...)
# S3 method for matrix
corr_rm(df, c, cutoff = 0.75, ...)
Arguments
- df
\[
data.frame(1)
]
input data frame.- c
\[
clist(1)
|cmatrix(1)
]
correlation list output fromcorrp
or correlation matrix output fromcorr_matrix
.- ...
Additional arguments (TODO).
- col
\[
character(1)
]
choose the column to be used in the correlation matrix- isig
\[
logical(1)
]
values that are not statistically significant will be represented by NA or FALSE in the correlation matrix.- cutoff
\[
numeric(1)
]
A numeric value for the pair-wise absolute correlation cutoff. The default values is 0.75.