A C++ implementation of the Silhouette method for interpreting and validating consistency within acca clusters of data.
Usage
sil_acca(acca, m, ...)
# S3 method for class 'acca_list'
sil_acca(acca, m, ...)
# S3 method for class 'list'
sil_acca(acca, m, ...)
Arguments
- acca
[
acca_list(1)
]
Acca clustering results fromacca
.- m
[
cmatrix(1)|matrix(1)
]
A correlation matrix fromcorr_matrix
. By default, the distance matrix (dist) used in this method is given bydist = 1 - m
.- ...
Additional arguments.
Value
[numeric(1)
]
The average value of
the silhouette width across all data in the entire dataset.
Observations with a large average silhouette width (close to 1)
are very well clustered.
References
Leonard Kaufman; Peter J. Rousseeuw (1990). Finding Groups in Data: An Introduction to Cluster Analysis. Hoboken, NJ: Wiley-Interscience. p. 87. doi:10.1002/9780470316801. ISBN 9780471878766.
Starczewski, Artur, and Adam Krzyżak. "Performance Evaluation of the Silhouette Index." International Conference on Artificial Intelligence and Soft Computing. Springer, Cham, 2015.
Examples
x <- corrp::corrp(iris)
m <- corrp::corr_matrix(x)
acca <- corrp::acca(m, 2)
sil_acca(acca, m)
#> [1] -0.2934118
#> attr(,"class")
#> [1] "corrpstat"
#> attr(,"statistic")
#> [1] "Silhouette"