Skip to contents

Determining the optimal number of cluster in the ACCA clustering using the average silhouette aproach.

Usage

best_acca(m, ...)

# S3 method for cmatrix
best_acca(m, mink, maxk, maxrep = 2L, maxiter = 100L, ...)

# S3 method for matrix
best_acca(m, mink, maxk, maxrep = 2L, maxiter = 100L, ...)

Arguments

m

\[matrix(1)]
correlation matrix from corr_matrix.

...

Additional arguments (TODO).

mink

\[integer(1)]
minimum number of clusters considered.

maxk

\[integer(1)]
maximum number of clusters considered.

maxrep

\[integer(1)]
maximum number of interactions without change in the clusters in the ACCA method.

maxiter

\[integer(1)]
maximum number of interactions in the ACCA method.

Value

\[list(3)]
A list with: silhouette average with per k `$silhouette.ave`; the sequence of clusters tested `$k` and the optimal number of clusters `$best.k`.

References

Leonard Kaufman; Peter J. Rousseeuw (1990). Finding groups in data : An introduction to cluster analysis. Hoboken, NJ: Wiley-Interscience. p. 87. doi:10.1002/9780470316801. ISBN 9780471878766.

Starczewski, Artur, and Adam Krzyżak. "Performance evaluation of the silhouette index. "International Conference on Artificial Intelligence and Soft Computing. Springer, Cham, 2015.

See also

Author

Igor D.S. Siciliani